# NCWGA Pre-Harvest Workshop 2022



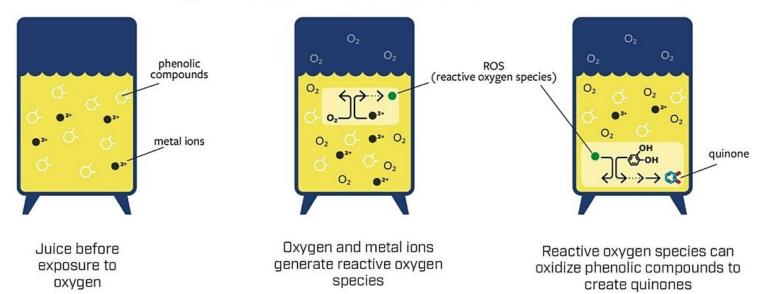
- Non-Saccharomyces yeast
- Prevention of oxidation in juice
  - Tools for lowered use of SO2/minimal input winemaking
- Using bentonite during fermentation
- Nutrients and yeast selection- tips, tools, timing



## Non-Saccharomyces Yeast

- Antimicrobial
- Antioxidation
- Acidification
- Aroma and Mouthfeel Enhancement
- Tips for Success
  - Rehydrate at lower temp
  - YAN, temperature, free SO<sub>2</sub>
  - Inoculate with a compatible Saccharomyces as recommended




| SELECTING NON-SACCHAROMYCES YEAST F | OR SUCCESS |
|-------------------------------------|------------|
|-------------------------------------|------------|

| Non-Saccharomyces                        | BIODIVA™                                                                                                                                                                           | FLAVIA™                                                                              | GAIA™                                                                                                                                                              | INITIA™                                                                                                           | LAKTIA™                                                               |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Organism                                 | Torulaspora delbrueckii                                                                                                                                                            | Metschnikowia pulcherrima                                                            | Metschnikowia fructicola                                                                                                                                           | Metschnikowia pulcherrima                                                                                         | Lachancea thermotolerans                                              |
| Main activity                            | Produces polysaccharides<br>and aroma compounds<br>(esters). Consumes some<br>sugar to alleviate osmotic<br>(high sugar) stress on<br>Saccharomyces                                | Enzyme production to<br>cleave aroma precursors to<br>reveals terpenes and thiols    | Bioprotectant against VA<br>producing native microflora                                                                                                            | Utilizes oxygen as a<br>growth factor, acts as a<br>bioprotectant inhibiting VA<br>producing native microflora    | Converts glucose to<br>lactic acid                                    |
| Winemaking application                   | To enhance the mouthfeel,<br>fruit esters and complexity<br>of white, rosé and red wines.<br>Suitable for late harvest, ice-<br>wine and high sugar where<br>VA can be a challenge | Optimize the tropical, citrus<br>and floral notes of certain<br>white and rosé wines | Can be added to white or<br>rosé juices for protection<br>during transportation.<br>Can be added to red<br>grapes to protect during<br>transportation or cold soak | Scavenges oxygen<br>thereby protecting white<br>and rosé juice from<br>oxidative damage and<br>microbial spoliage | Acidification of low acid<br>musts adding freshness<br>and complexity |
| When to add<br>Non- <i>Saccharomyces</i> | Directly to the<br>fermentation vessel                                                                                                                                             | Directly to the<br>fermentation vessel                                               | Directly to grapes (to<br>protect during transport or<br>cold soak) or juice (protect<br>during juice transport)                                                   | To freshly pressed juice to<br>protect during cold settling                                                       | Directly to the<br>fermentation vessel                                |
| When to add<br>Saccharomyces             | After 1.5–3°Brix drop                                                                                                                                                              | 24 hours after Flavia                                                                | Upon juice receipt, or end of cold soak                                                                                                                            | Once juice racked to<br>fermentation vessel                                                                       | 24–72 hours after Laktia                                              |



## **Oxidation- Quinone Formation**

Figure 1. Chemical Mechanism of Quinone Formation





### **Preventing Oxidation**

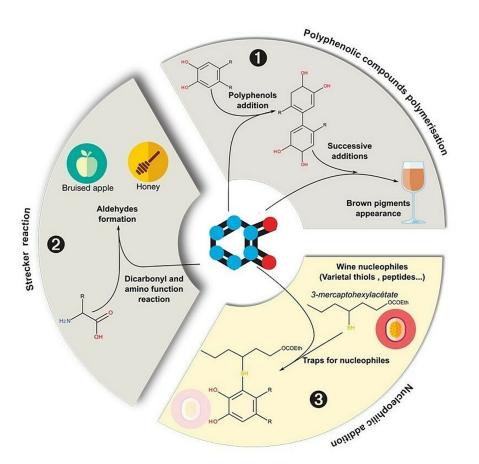



Figure 2. Quinone Reactions in Wine



# **Preventing Oxidation**

- Limit Quinone Formation or Quinone Reactions
- SO<sub>2</sub> is most commonly used
  - Negative sensory impact
  - Negative impact on ML
  - "low chemical input" wines
- Many points to disrupt the oxidative cascade



# **Preventing Oxidation**

- Yeast Derived Nutrients
  - React with quinones to limit reactions
- Non-Saccharomyces Yeast
  - Consume Oxygen rapidly
  - Lower copper levels
- Tannin
  - Scavenge metal ions and quinones
  - Inhibit laccase







#### Removing Oxidized Characters in Juice

- Chitosan offers an alternative to casein
  - Animal-free, nonallergenic
  - Brighter color and increased aromatics
  - Remove off odors and compounds from mold or from green fruit





### Fermentation on Bentonite

- May eliminate or reduce the need for protein stabilization before bottling
- Preservation of aromatics
- Minimizes racking steps/saves time
- Limit wine loss
- Must use an ultrapure form of bentonite
  - Leaching of copper and iron
- Tank fermented white and rosés



### Fermentation on Bentonite

- May eliminate some post-fermentation processes
- May stimulate fermentation by increasing surface area for the yeast
- FERMOBENT PORE-TEC compacts well and leads to lower lees volumes than post-fermentation bentonite treatments



# Fermentation on Bentonite



| Juice with<br>moderate<br>protein content              | 500-1500 ppm  | 50-150 g/hL  | 4.2-12.5 lb/1000 gal |
|--------------------------------------------------------|---------------|--------------|----------------------|
| Juice with high<br>protein<br>content and pH<br>values | 2000-3000 ppm | 200-300 g/hL | 16.7-25lb/1000 gal   |



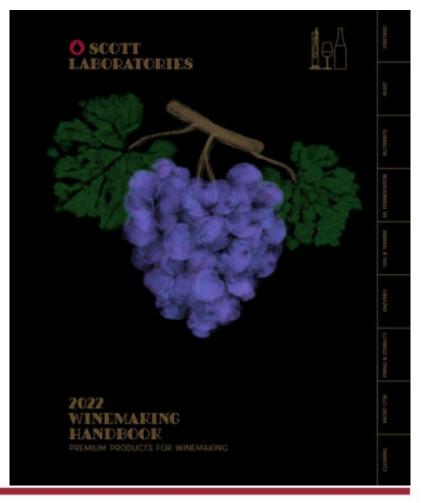
#### Nutrients- Determining YAN Additions

Table 1: Measurable yeast assimila-ble nitrogen (YAN) needs of yeast atdifferent starting sugars

|       | YAN Required for Fermentation<br>(ppm N) |                  |                |
|-------|------------------------------------------|------------------|----------------|
| °Brix | Low N<br>need                            | Medium N<br>need | High N<br>need |
| 20    | 150                                      | 180              | 250            |
| 22    | 165                                      | 200              | 275            |
| 24    | 180                                      | 220              | 300            |
| 26    | 195                                      | 240              | 325            |
| 28    | 210                                      | 260              | 350            |
| 30    | 225                                      | 280              | 375            |

- Measure **SUGAR** (Brix) and **YAN** of the juice/must.
- Choose a yeast strain.
- Determine the chosen yeast strain's **NITROGEN NEED** — low, medium, or high. This information is listed in the product description.
- Determine **YAN REQUIRED** for fermentation ppm by consulting table.
  - For example: If the juice is 24 °Brix and ALCHEMY I (a medium N need strain) is selected, the fermentation will need 220 ppm YAN.
- If the YAN REQUIRED is higher than the JUICE YAN, then ADDITIONAL YAN is required. To calculate: ADDITIONAL YAN = YAN REQUIRED - JUICE YAN.




## Making A Nutrient Plan

| Stage of Winemaking | Formentation Cool*       | ADDITIONAL YAN REQUIRED                            |                     |                     |  |
|---------------------|--------------------------|----------------------------------------------------|---------------------|---------------------|--|
|                     | Fermentation Goal*       | 0-50 ppm                                           | 51-100 ppm          | 101-150 ppm         |  |
| At Rehydration      | All Fermentation Goals   | GO FERM PROTECT EVOLUTION - 30 g/hL                |                     |                     |  |
|                     | Fermentation Security    | N/A                                                | FERMAID 0 – 20 g/hL | FERMAID 0 – 40 g/hL |  |
| At 2-3 °Brix Drop   | Increase Varietal Aromas | STIMULA SAUVIGNON BLANC or STIMULA SYRAH - 40 g/hL |                     |                     |  |
|                     | Increase Fruity Esters   | N/A                                                | FERMAID 0 – 20 g/hL | FERMAID 0 – 40 g/hL |  |
|                     | Fermentation Security    | FERMAID 0 – 30 g/hL                                | FERMAID 0 – 40 g/hL | FERMAID K – 40 g/hL |  |
| At 1/3 °Brix Drop   | Increase Varietal Aromas | FERMAID 0 – 10 g/hL                                | FERMAID 0 – 20 g/hL | FERMAID 0 – 40 g/hL |  |
|                     | Increase Fruity Esters   | STIMULA CHARDONNAY or STIMULA CABERNET - 40 g/hL   |                     |                     |  |

| NUTRITION PLAN    |        |       |                           |  |
|-------------------|--------|-------|---------------------------|--|
|                   | Dosage |       | Nutrient                  |  |
| At Rehydration    | 30     | ]g/hL | GO FERM PROTECT EVOLUTION |  |
| At 2-3 °Brix Drop |        | ]g/hL |                           |  |
| At 1/3 °Brix Drop |        | ]g/hL |                           |  |



#### **Yeast Selection**





## Tools available at ScottLab.com

- Fermentation Scott Labs
- <u>Best-Practices-For-Rot-Whites-Rosé.pdf</u> (sfo3.cdn.digitaloceanspaces.com)
- <u>RotProtocol\_Reds\_072920.pdf</u> (sfo3.cdn.digitaloceanspaces.com)
- <u>Troubleshooting Stuck or Sluggish Alcoholic</u> <u>Fermentations - Scott Labs</u>



Questions? MEGANH@SCOTTLAB.COM

1-540-239-9211

#### **THANK YOU!**

